Minimax Rates of Estimation for Sparse PCA in High Dimensions

نویسندگان

  • Vincent Q. Vu
  • Jing Lei
چکیده

We study sparse principal components analysis in the high-dimensional setting, where p (the number of variables) can be much larger than n (the number of observations). We prove optimal, non-asymptotic lower and upper bounds on the minimax estimation error for the leading eigenvector when it belongs to an lq ball for q ∈ [0, 1]. Our bounds are sharp in p and n for all q ∈ [0, 1] over a wide class of distributions. The upper bound is obtained by analyzing the performance of lqconstrained PCA. In particular, our results provide convergence rates for l1-constrained PCA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse CCA: Adaptive Estimation and Computational Barriers

Canonical correlation analysis (CCA) is a classical and important multivariate technique for exploring the relationship between two sets of variables. It has applications in many fields including genomics and imaging, to extract meaningful features as well as to use the features for subsequent analysis. This paper considers adaptive and computationally tractable estimation of leading sparse can...

متن کامل

Rate-optimal Posterior Contraction for Sparse Pca

Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low rank structure of the data. In the high-dimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA ...

متن کامل

Rate-optimal Posterior Contraction for Sparse Pca By

Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low-rank structure of the data. In the highdimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA w...

متن کامل

Sparse PCA: Optimal Rates and Adaptive Estimation

Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. This paper considers both minimax and adaptive estimation of the principal subspace in the high dimensional setting. Under mild technical conditions, we first establish the optimal rates of convergence for estimating the principal subspace which are sharp with respect to...

متن کامل

Minimax Sparse Principal Subspace Estimation in High Dimensions

We study sparse principal components analysis in high dimensions , where p (the number of variables) can be much larger than n (the number of observations), and analyze the problem of estimating the subspace spanned by the principal eigenvectors of the population covariance matrix. We prove optimal, non-asymptotic lower and upper bounds on the minimax subspace estimation error under two differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012